

REVOLUTIONIZING CONCRETE STRENGTH MONITORING

AASHTO T 412

www.wavelogix.tech

Date: January 16, 2025

Presented by: Joe Turek

Introduction

Wavelogix[®], Inc. was founded in 2021 in partnership with INDOT and Purdue University to improve road and bridge reliability while reducing traffic disruptions.

Our REBE® Concrete Strength Sensing System provides real-time, in-place measurements of concrete properties, offering a more precise and versatile solution than traditional sensors.

With patented technology, Wavelogix eliminates the need for pre-set maturity curves, delivering accurate results across various projects and helping teams optimize schedules and reduce costs.

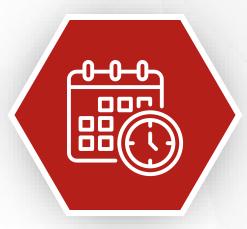


Joe Turek President & COO

Joe Turek, received a bachelor's degree in Electrical Engineering (BSEE) in 1979 from the University of Notre Dame and an MBA from Northwestern's Kellogg School of Management in 1982.

He has been involved in manufacturing his entire career. He holds five patents involving high performance microwave telecommunications circuit board technologies and has been a registered Professional Engineer and a member of the IPC and IEEE.

AASHTO T412 The Future of Strength Testing


Acoustical Resonance Method

Determines real-time, in-place strength

Increases ROI

Shift from traditional to real-time accurate testing

January 2025

Massachusetts DOT adopts T412 in concrete specifications

Why Is Knowing Concrete Strength Critical

Concrete must reach specific strength levels before proceeding with these essential construction steps:

Structural Form Removal

Safely remove forms surrounding the structure.

Scaffolding Removal

Clear scaffolding under floors in buildings or garages.

Post-Tensioning

Enable tensioning in bridges and decks.

Traffic Release

Allow traffic on new pavement.

Segment Pouring

Pour the next section of tall columns or walls.

Panel Lifting

Lift Tilt-Up panels into place.

Panel Lifting

Lift Tilt-Up panels into place.

AASHTO T 22 | TRADITIONAL METHOD FOR TESTING CONCRETE TODAY

DISADVANTAGES

Limited insights after first 20 hrs

Temperature-dependent with inconsistent results

Periodic Testing Intervals (1, 3, 7, 14, 28 days) Rather than REAL-Time Monitoring

High Potential for error (up to 500%)

Time delays and resource-heavy process

Compression
Cylinder/ Break

Flexural Bream Break

Benefits and Impact

- Calibration Free
 Independent of mix design, temperature and moisture
- Real-Time Data

 Monitors concrete strength up to 56 days and beyond
- Proven Reliability

 Lower variability than cylinder, beam and core tests
 - Cost & Time Savings

 Enables faster project completions and earlier payments
 - AASHTO T 412 Compliant

 Fully aligned with the new standard

Verification Testing: Fast Cure Concrete includes AASHTO-T 412

REBEL Paving the Way

Table M4.03.2-4: QC Testing Requirements for Hardened Concrete^[1]

Test Method	Qu	Quality Characteristic		Limits	
		12		Min.	Max.
Select One		24 Hours	2500	-	
Method		High Early Strength	3 Days	4000	-
			7 Days	5000	-
			4 Hours	2500	_
		Rapid Hardening	24 Hours	4000	<u>-</u>
			7 Days	5000	

- [1] QC testing for hardened concrete is only required for high early strength concrete (M4.06.3) and rapid hardening concrete (M4.06.4).
- [2] Three (3) 4 x 8 in. cylinders shall be cast and tested for each set specified for maximum aggregate size less than 1-1/2 inches. Two (2) 6 x 12 in. cylinders shall be cast and tested for each set specified for maximum aggregate size greater than 1 inch.

Verification Testing: General Concrete Includes ASSHT T-412

REBEL Paving the Way

Table M4.06.1-4(a): Verification Testing Requirements for Hardened Concrete

Test Method	Quality Characteristic		Limits	
			Min.	Max.
AASHTO T 22 ^{[1][2]}	Compressive Strength (psi)	3 Days	Informational	
		7 Days	Inform	ational
		28 Days	Target	_
		56 Days	Inform	ational

- [1] Three (3) 4 x 8 in. cylinders shall be cast for each specified age for maximum aggregate size less than 1-1/2 inches. Two (2) 6 x 12 in. cylinders shall be cast for each specified age for maximum aggregate size greater than 1 inch.
- [2] Subject to Department review and Approval, the following in-place, non-destructive test methods may be used as an alternative to AASHTO T 22 for determining early age strength during construction for certain concrete applications as specified in the Division II: Construction Details Standard Specifications, contract document, or special provisions:
 - ASTM C1074 Standard Practice for Estimating Concrete Strength by the Maturity Method.
 - AASHTO T 412 Standard Method of Test for Real-Time Estimate of In-Place Concrete Strength Using Acoustical Resonance Method.

Verification Testing:
Precast/Prestress Concrete
Includes ASSHTO T-412

REBEL Paving the Way

Table M4.09.3-7: QC Testing Requirements for Hardened Concrete^[1]

Test Method	Quality Characteristic		Limits		
				Min.	Max.
Select One	AASHTO T 22 ^{[2][3]}	Compressive	Form Removal	70% of f'c	_
Method	ASTM C1074 AASHTO T 412	Strength (psi)	Prestressing Strand Release	80% of f'c	-
			Termination of Protection from Adverse	100% of f'c	-
			Conditions and Shipping		

- [1] The specified compressive strength (f'c) is defined as the minimum compressive strength required to be attained at a specified age for a given concrete structure, as identified in construction standard specifications, contract document special provisions, and design plans.
- [2] Three (3) 4 x 8 in. cylinders shall be cast and tested for each set specified for maximum aggregate size less than 1-1/2 inches. Two (2) 6 x 12 in. cylinders shall be cast and tested for each set specified for maximum aggregate size greater than 1 inch.
- [3] For fiber reinforced concrete, specimens shall be filled in one lift and consolidated using external or internal vibration per AASHTO R 100. Rodding of test specimens shall be prohibited.

Why AASHTO T-412 Matters

- Effective January 2025. Massachusetts DOT's Inclusion of T-412 demonstrates leadership in advancing construction practices.
- Benefits of AASHTO T-412:
 - Non-destructive Testing: Accurate strength monitoring without delays.
 - Real-Time Insights: Preditcs 28-day strength in as little as 3 days.
 - Broader Adoption: T142 is expected to be embraced by other states soon.

REBEL® Sensor System Segment Applications

KEY BENEFITS

Horizontal	 Accelerate traffic release Eliminate cylinder breaks Enable early payment 	Geo Tech Houses	Expand market reachReduce labor costsBoost profitability
Vertical	 Save time and costs Achieve 50% cost savings Improve project timeline by 50% 	Redi-Mix	 Confirm product quality for customers Avoid costly replacements
Slab	Verify flexural strength and flatness	Precast	 Optimize form removal Enable early shipment to customers
Tilt -Up	• Ensure safe, confident lifting	International	 Introduce new technology from the U.S. Laboratories

Costs with Cylinder Breaks

COST BREAKDOWN	
Labor: 4 hours minimum @\$100/hr	\$400
Transportation: Round trip to/from site	\$100
Cylinder Cost: 15 cylinders @ \$25 each	\$375
Lab Equipment Fee: Flat Rate	\$100
Final Reporting, Profit & Overhead	\$400

Concrete Use:

15 Cylinders/100CY= 150 lbs of Concrete

Testing Schedule:

3 Cylinders tested at: 1,3,7,14, and 28 days

Total Cost **\$1375/**100CY

Concrete Poured

Cost Comparison

REBEL®Sensor System vs. Cylinder Breaks

COST BREAKDOWN	
Labor: 1 hour @\$100/hr	\$100
Sensor (per ACI Standard)	\$400
Overhead & Profit	\$200

Online Dashboard Automatic Reporting

- Real-time access
- Instant Strength Results: time vs. strength
- Strength shown in compression, flexural or modulus

Total Cost

\$700/100CY

Concrete Poured

50% Savings

Compared to Cylinder Testing

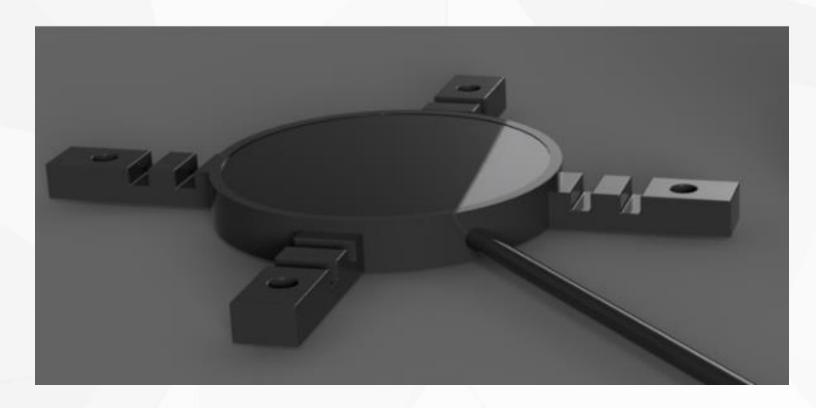
Easy TESTING SET UP

Drop on Roadbed

Strap to Rebar

The REBEL® System

Miniaturized IoT Hardware for:

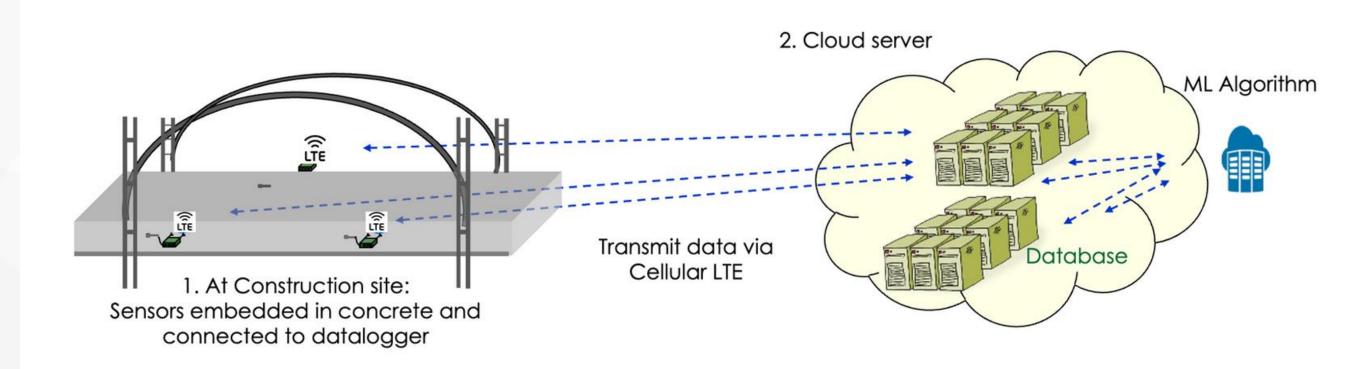

Data collection and Computational Transmission

Al-guided algorithm for:

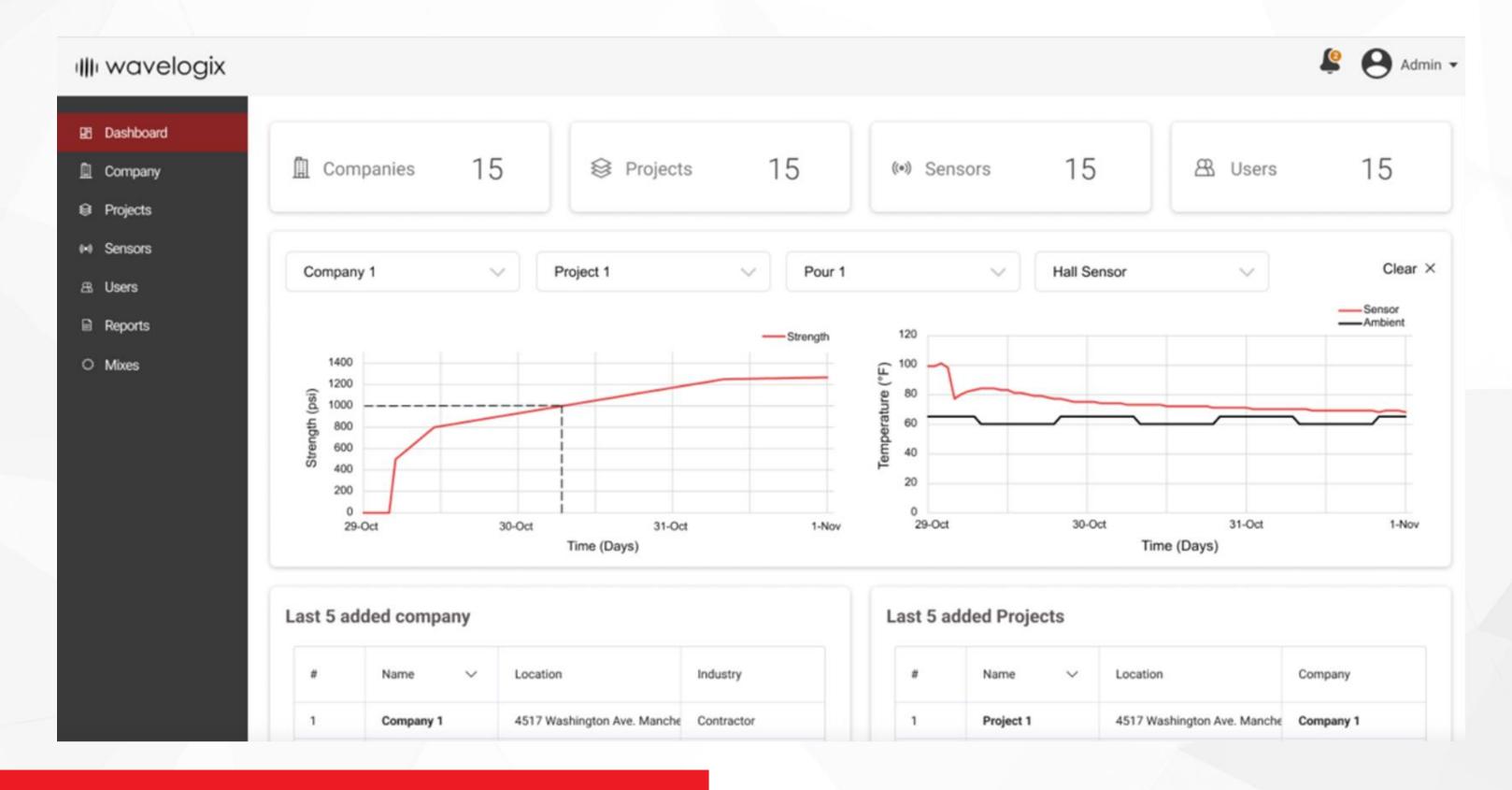
Concrete strength measurement Concrete strength prediction

REBEL Sensor

Inside: Piezo wave generator and temperature probe


REBEL Data Logger

Inside:


- Impedance meter
- GPS location chip
- Cellular radio
- Lilon Battery (28 day capacity)
- Wireless recharging with a cradle charger
- Sealed case that can work under water
- Durable housing to withstand environmental pressures

How It Works

Dashboard and User Interface

Book a meeting:

Explore how the REBEL System can transform your concrete monitoring process!

Learn More:

sales@wavelogix.tech

SCAN ME

THANK YOU